En algunas ocasiones las existencias pueden estar erróneas o no se lo podremos conseguir en el plazo señalado. Confiamos en su comprensión y le agradecemos la confianza depositada. Esperamos no defraudarle.
Para aprender de verdad ciencia de datos, no solamente es necesario dominar las herramientas (librerías de ciencia de datos, frameworks, módulos y kits de herramientas), sino también conviene comprender las ideas y principios subyacentes. Actualizada para Python 3.6, esta segunda edición de Ciencia de datos desde cero muestra cómo funcionan estas herramientas y algoritmos implementándolos desde el principio. Si ya tiene aptitudes para las matemáticas y ciertas habilidades de programación, el autor, Joel Grus, le ayudará a familiarizarse con las mates y las estadísticas, que son el núcleo de la ciencia de datos, y con las habilidades informáticas necesarias para iniciarse como científico de datos. Repleto de nueva información sobre deep learning (aprendizaje profundo), estadísticas y procesamiento del lenguaje natural, este libro actualizado le muestra cómo sacar lo mejor de la sobreabundancia de datos que actualmente nos rodea.
Este sitio web sólo utiliza cookies propias. Puedes configurar la utilización de cookies u obtener más información aquí
Más información sobre el uso de "cookies" y sus opciones de privacidad
Este sitio web utiliza cookies propias que se detallan a continuación en el panel de configuración.
A través del mismo, puede aceptar o rechazar de forma diferenciada el uso de cookies, que están clasificadas en función del servicio. En cada uno de ellos encontrará información adicional sobre sus cookies. Puede encontrar más información en la Política de cookies.
Estrictamente necesarias (técnicas):
Se usan para actividades que son estrictamente necesarias para gestionar o prestar el servicio que usted nos ha solicitado y, por tanto, no exigen su consentimiento.