En algunas ocasiones las existencias pueden estar erróneas o no se lo podremos conseguir en el plazo señalado. Confiamos en su comprensión y le agradecemos la confianza depositada. Esperamos no defraudarle.
Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be app
Este sitio web sólo utiliza cookies propias. Puedes configurar la utilización de cookies u obtener más información aquí
Más información sobre el uso de "cookies" y sus opciones de privacidad
Este sitio web utiliza cookies propias que se detallan a continuación en el panel de configuración.
A través del mismo, puede aceptar o rechazar de forma diferenciada el uso de cookies, que están clasificadas en función del servicio. En cada uno de ellos encontrará información adicional sobre sus cookies. Puede encontrar más información en la Política de cookies.
Estrictamente necesarias (técnicas):
Se usan para actividades que son estrictamente necesarias para gestionar o prestar el servicio que usted nos ha solicitado y, por tanto, no exigen su consentimiento.