En algunas ocasiones las existencias pueden estar erróneas o no se lo podremos conseguir en el plazo señalado. Confiamos en su comprensión y le agradecemos la confianza depositada. Esperamos no defraudarle.
El propósito del libro es proporcionar diferentes caracterizaciones a los conceptos más importantes que comprende un curso de Cálculo Diferencial, como son el de derivada, límite, función, etc., que se considera pueden mejorar el entendimiento de los estudiantes. Se plantea el concepto de función desde nociones cercanas a ésta, como son las de variable, variación y variabilidad, sin dejar de lado sus significados ya conocidos de fórmula, dependencia, modelo, gráfica, etc. Para el concepto de límite se ha agregado a sus definiciones comunes la noción de tolerancia que se usa comúnmente en los cursos de ingeniería, y sirve de puente para entender su definición formal. En lo que se refiere a la derivada, se consignan para su definición imágenes cercanas a ésta como son las de diferencia y diferencial. El segundo capítulo es vasto en destrezas para el diseño gráfico de funciones. Con el objeto de reforzar los aprendizajes del curso se agregaron un número suficiente de problemas y actividades y ejercicios, a cada sección de trabajo. Finalmente, no se habla con la formalidad de la matemática de teoremas, conceptos y objetos, así como demostraciones rígidas,puesto que el texto por sí mismo es dirigido a estudiantes que cursan estos conocimientos en el nivel de ingeniería y para los cuales importa más entender éstos desde la perspectiva de su carrera y no desde el punto de vista de la matemática formal. No obstante, se desarrollan demostraciones, opcionales, necesarias para dar continuidad al texto, a partir de las nociones épsilon-delta, intentándolo mediante apoyos gráficos y algebraicos en cada caso. INDICE RESUMIDO: Números reales. Clasiificación de los números reales. Definición de función. Aritmética de las funciones. Gráfica de funciones trascendentes. Definición de límite. La existencia del límite de una función. El límite como una tolerancia. Propiedades de los límites. Definición de la derivada. Primeros significados de la derivada. La derivada como razón de cambio. Máximos y mínimos. La regla de L'Hopital . Series y sucesiones. Series de potencias. Serie de MacLaurin. Serie de Taylor y su convergencia.
Este sitio web sólo utiliza cookies propias. Puedes configurar la utilización de cookies u obtener más información aquí
Más información sobre el uso de "cookies" y sus opciones de privacidad
Este sitio web utiliza cookies propias que se detallan a continuación en el panel de configuración.
A través del mismo, puede aceptar o rechazar de forma diferenciada el uso de cookies, que están clasificadas en función del servicio. En cada uno de ellos encontrará información adicional sobre sus cookies. Puede encontrar más información en la Política de cookies.
Estrictamente necesarias (técnicas):
Se usan para actividades que son estrictamente necesarias para gestionar o prestar el servicio que usted nos ha solicitado y, por tanto, no exigen su consentimiento.